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Thermodynamics of correlated electrons with bond charge
and Hubbard interaction in one dimension

G J̈uttner†, A Kl ümper‡ and J Suzuki§
Institut für Theoretische Physik, Universität zu Köln, Zülpicher Strasse 77, D-50937 Köln 41,
Germany

Received 23 August 1996

Abstract. The integrable model of one-dimensional electrons with bond charge and Hubbard
interaction is investigated at finite temperatures. The approach based on the quantum transfer
matrix is employed. The specific heat and compressibility are calculated showing interesting
structures at intermediate temperatures. In the low-temperature regime the Luttinger liquid
picture is verified.

Systems of strongly correlated electrons in low dimensions are subjects of considerable cur-
rent interest. In particular, the discovery of high-TC superconducting materials [1] has trig-
gered extensive studies of various systems such as the Hubbard model, thet–J model, etc.

In one dimension the powerful tool of the Bethe ansatz (BA) method has unveiled
several fundamental properties of these models. Especially, the combination of the BA
method with methods of conformal field theory (CFT) resulted in a satisfactory picture for
the zero temperature properties. However, the finite temperature properties are yet to reach
the same quality.

The scope of the traditional thermodynamical Bethe ansatz (TBA) is not sufficiently
wide to provide interesting quantities beyond the free energy such as finite temperature
correlation lengths. Moreover, due to technical reasons the TBA usually causes troubles
even in numerical evaluations of the free energy. A novel approach combining several
developments in the theory of exactly solvable lattice models has been proposed that does
not have the previously mentioned drawbacks [2–7]. More recently, the application to
highly correlated electron systems such as the Hubbard model [8] and the supersymmetric
t–J model turned out to be successful [9].

In this communication, we will study the finite temperature properties of a generalized
Hubbard model [10] for electrons in one-dimensional space adopting the novel scheme. The
model is characterized by a so-called correlated-hopping term, on-site Coulomb interaction
and a pair-hopping term
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which we study on a ring of lengthL with periodic boundary conditions. The solvable
manifold we are going to discuss is given byU/2 = tp = sinhγ / sinhαγ , exp(−η) =
sinh(α + 1)γ / sinhαγ , γ > 0 and α is either greater than 0 or smaller than−1. We
note that this model does not comprise the pure Hubbard model (η = γ = tp = 0),
but several other models of interest: the pure correlated-hopping model (|α| → ∞), the
supersymmetrict–J model (α → 0, γ = 0), and a model of hard core particles of three
species (α → −1). The ground-state properties of the system have been analysed in
[10]. Generally, for finiteγ the spin excitations (spinons) possess a gap, while the charge
excitations (holons) are gapless as in the Emery model. Forγ = 0, both spinon and holon
are massless for the repulsive case, while only pair excitations are massless for the attractive
case. The crossover behaviour from dominant density–density correlations to dominant pair
correlations manifests the superconducting properties of the model. In view of the latter
properties the model deserves further studies, especially on finite temperature properties.
The TBA construction has been applied to the rational case (γ = 0), resulting in an infinite
set of coupled equations [11]. The complexity of the resultant equations defies, however,
the further analysis of finite temperature properties. In the following we will present an
alternative and comprehensive investigation of the thermodynamics of the model.

Besides properties of physical interest, the model also possesses rich mathematical
structures. The symmetry underlying the solvability of this model has been clarified in
terms of a four-dimensional representation ofUq(gl(2|1)), q = eγ . In the rational limit
(γ → 0) four supersymmetric generators (including an appropriate chemical potential term)
exist which commute with the Hamiltonian. Thus, the model exhibits supersymmetry under
suitable boundary conditions without taking the continuum limit. In this sense the model
is quite unique. We refer to [12, 13] for the diagonalization of the associated row-to-row
transfer matrix. Below, we will show that the partition function of the quantum transfer
matrix enjoys a simple factorization property as a function of the spectral parameter.

In this report, we restrict ourselves to the repulsive case (α > 0). The studies of the
attractive case as well as a complete derivation of the key equations will be given in a
separate publication.

We quickly review the novel approach to finite temperature studies utilizing the quantum
transfer matrix. Here we adopt a most sophisticated formalism. LetT (v) denote the
transfer matrix of the classical vertex model [14] corresponding to our quantum system.
The local Boltzmann weights,R(v), depend on a so-called spectral parameter which labels
the commuting family of transfer matrices [T (v1), T (v2)] = 0. Similarly, letT (v) be the
transfer matrix consisting ofπ/2 rotated vertices. The standard initial condition then implies

lim
N→∞

(T (u)T (u))N/2 = exp(−βH′) with u = g β
N

(2)

whereN is often referred to as the Trotter number andg is a (trivial) normalization to be
specified later. We are now dealing with a virtually two-dimensional classical system of
horizontal and vertical extensionL andN , respectively. We define the so-called quantum
transfer matrix as the column-to-column transfer matrix. This matrix can be embedded in a
family of commuting operatorsTQ(v) which are defined by alternating products of vertices
R(v + u) and rotated vertices̃R(v − u). Therefore, we have a ‘finite temperature Baxter’s
formula’

−βf = lim
N→∞

log3max
Q (0) (3)

where3max
Q (v) is the largest eigenvalue ofTQ(v), and the interchangeability of the limits of

infinite system size and Trotter number is assumed, see also [15]. Similarly we can reduce
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the evaluation of several thermodynamic quantities to that of other eigenvalues ofTQ(v).
As mentioned we adopt the 36 vertexUq(gl(2|1)) model [14] as the classical counterpart
of Hamiltonian (1) which is recovered after a trivial shift of the ground-state energy and
chemical potentialH′ = H+ 2 cosh(α + 1)γNe− 2L cosh(α + 1)γ , whereNe denotes the
total number of electrons and the normalizationg = sinh(α + 1)γ / sinhγ .

Through some calculations based on the quantum inverse scattering method, we find
the following eigenvalue expression for3Q(v)

3Q(v) = φ1(v)
q1(v + iγ (2α + 1)/2)

q1(v + iγ /2)
e2µβ + φ2(v)

q1(v + iγ (2α + 1)/2)q2(v + iγ )

q1(v + iγ /2)q2(v)
eµβ

+φ2(v)
q1(v + iγ (2α + 1)/2)q2(v − iγ )

q1(v − iγ /2)q2(v)
eµβ + φ3(v)

q1(v + iγ (2α + 1)/2)

q1(v − iγ /2)
(4)

where we have introduced a chemical potential term−µNe whereµ is measured from the
bottom of the band. The functionsφ are defined by

φ1(v) =
(

sinh(iv + u) sinh(iv + αγ − u) sinh(iv − γ + u)
sinh(iv − (α + 1)γ + u) sinh(iv + αγ + u) sinh(iv − αγ − u)

)N/2
φ2(v) =

(
sinh(iv + u) sinh(iv − u)

sinh(iv − (α + 1)γ + u) sinh(iv − αγ − u)
)N/2 (5)

andφ3(v, α) = φ1(−v, α→−α−1). The functionsq(v) are given in terms of Bethe ansatz
rapiditiesv(i)j : qi(v) =

∏
j sin(v − v(i)j ). The location of these rapidities is determined by

nested Bethe ansatz equations (BAE) which are derived from the analyticity of3Q(v). We
avoid solving the BAE directly. Instead, we reformulate the analyticity condition in the
form of nonlinear equations for conveniently defined auxiliary functions.

Let us introduce

a0(v) = λ1(x)(λ3(x)+ λ4(x))

λ2(x)(λ1(x)+ λ2(x)+ λ3(x)+ λ4(x))
a1(v) = λ1(x)

λ2(x)+ λ3(x)+ λ4(x)
(6)

whereλi denotes theith summand on the right-hand side of (4) and the argument has been
shifted according tox = v + i αγ2 . We are now interested in the largest eigenvalue. Through
extensive numerical and analytic calculations we have verified remarkable properties of
the corresponding distribution of the BA rapidities. Certain additive combinations of the
λ-functions factorize in terms of theq-functions. As an example we note thea0(v) function

a0(v) = (sinh(iv + αγ − u) sinh(iv − γ + u))N/2
1+ e−βµ

q2(v − i(α + 1)γ )

q1(v − i(α + 1
2)γ )q2(v + iγ )

(7)

where the upper-line denotes the complex conjugationf (v) = f (v). As a direct corollary
3max
Q (v) takes a simple form

3max
Q (v) = `Q(v)`Q(v)

`Q(v) =
(eβµ + 1)q1(v + i(α + 1

2)γ )

(sinh(iv + (α + 1)γ − u) sinh(iv + αγ + u))N/2
(8)

i.e. it factorizes into ‘holomorphic’ (v) and ‘anti-holomorphic’ (v) parts. To our knowledge,
such a factorization of the partition function in terms of dressed functions has never been
observed before for one-dimensional quantum systems at finite temperature.



1884 G Jüttner et al

The following nonlinear integral equations are immediate consequences of this property

loga0 = βψ[−iδ] + βµ+ k[−iδ] ∗ logA1+ k[−2iδ] ∗ logA0

loga1 = β(ψ + ψ)+ 2βµ+ k[−iδ] ∗ logA0+ k[+iδ] ∗ logA0+ (k + k) ∗ logA1

(9)

where we have introduced the notation for shifted functionsf[x](v) = f (v + x), the
convolutionA ∗ B = 1

π

∫ π/2
−π/2A(v − v′)B(v′) dv′, and

ψ(v) = sinh2((α + 1)γ )

sinh(iv + αγ/2) sinh(iv − (α + 2)γ /2)
k(v) = sinhγ

2 sinh iv sinh(iv − γ ) . (10)

Furthermore, a positive parameterδ of the order ofγ has been introduced to render the
integrands analytic. Note that the final results do not depend on this parameter thanks to
Cauchy’s theorem. We also remark the similarity of the above (nonlinear) integral equations
to the (linear) dressed energy equations. This relation can be established quantitatively in
the low-temperature limit [16, 17]. After solving (9) the eigenvalue3Q(v) is given by

3Q(v) = 30(v)+ ζ ∗ logA0+ ζ ∗ logA0+ (ζ + ζ ) ∗ logA1

30(0) = 2β cosh(α + 1)γ ζ(v) = − βψ(−v)
sinh(α + 1)γ

.
(11)

As emphasized already, we have to deal with only two integral equations in contrast to
the infinite number of coupled equations in the case of TBA. In principle and practice, the
free energy for arbitrary temperature and chemical potential can be obtained by numerical
calculations of (9) achieving a much higher precision.

Before presenting results of our numerical computations, let us mention some
consistency relations we have checked. For instance, the high-temperature limit of the
entropy is correctly reproduced as well as the limiting cases of free fermions (γ → 0,
α→∞) and thet–J model (γ → 0, α→ 0) for which the nonlinear integral equations (9)
actually coincide with those for thet–J model [9, 17]. Finally, we observe the consistency
with the Luttinger liquid predictions for the low-temperature asymptotics.

In figure 1 numerical results are shown for the specific heat and compressibility of
the system with parametersγ = 0 and α = 1

2. Quite generally, we observe a linear
temperature dependence of the specific heatc(T ) in the low-temperature limit and a finite
compressibilityκ(T ) for T = 0 unless the particle density approaches the extremal values
of 0 and 2. For small particle densities, the specific heat resembles that of thet–J model
which actually corresponds toα = 0. Two structures are visible corresponding to charge
and spin excitations, the latter one being dominant for densities close to 1. There exists,
however, several features different to thet–J model. Due to the pair-hopping term, the
model has a massless dispersion relation for such coherent movings. Therefore, the double
peak structure, observed for thet–J model, is smoothed out and hardly seen forn ∼ 1.
More significantly, the present system allows for densities larger than 1, in contrast to
the t–J model. After further increase ofn the ‘spin’ maximum ofc(T ) is suppressed
in height and shifted to lower temperatures, because of a decreasing density of unpaired
spins. Simultaneously, pairs of electrons, i.e. doubly occupied sites, begin to dominate
the dynamics via the Hubbard and pair-hopping mechanisms in (1). The corresponding
structure ofc(T ) is located at aboutT ' tp = 2. For densities close to the maximum value
the specific heat approaches a flat curve. Also the compressibility shows an interesting
dependence on temperature and particle density. For densities 0< n < 1 this quantity
shows a maximum at a temperature corresponding to the charge ‘peak’ in the specific heat.
At larger densities a double peak structure is developed corresponding to the two types of
charge excitations of the system (single particles and pairs).
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Figure 1. Specific heat and compressibility in dependence on temperature,T , for different
particle densities,n, and fixed interaction parametersγ = 0, α = 1

2 . Note the different offsets
and scales of the diagrams.
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Therefore, we have presented the exact thermodynamics of a solvable generalized
Hubbard model. The remarkable factorization property of the eigenvalue function of
the quantum transfer matrix enabled us to derive nonlinear integral equations. The low-
temperature behaviour for the repulsive case,γ = 0 and small values forα andn is found
to be governed by thet–J universality class. We also observe an exotic behaviour at high
electron densities.

Similar studies for the model with attractive interaction and for the sub-case of the
correlated-hopping model [18] are in progress. Also, we would like to report on the
evaluation of the correlations at finite temperatures in the near future.
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